An Adaptive Partition of Unity Method for Chebyshev Polynomial Interpolation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate polynomial interpolation on Lissajous-Chebyshev nodes

In this contribution, we study multivariate polynomial interpolation and quadrature rules on non-tensor product node sets linked to Lissajous curves and Chebyshev varieties. After classifying multivariate Lissajous curves and the interpolation nodes related to these curves, we derive a discrete orthogonality structure on these node sets. Using this discrete orthogonality structure, we can deriv...

متن کامل

Sparse polynomial interpolation in Chebyshev bases

We study the problem of reconstructing a sparse polynomial in a basis of Chebyshev polynomials (Chebyshev basis in short) from given samples on a Chebyshev grid of [−1, 1]. A polynomial is called M -sparse in a Chebyshev basis, if it can be represented by a linear combination of M Chebyshev polynomials. For a polynomial with known and unknown Chebyshev sparsity, respectively, we present efficie...

متن کامل

An Extension of the Partition of Unity Finite Element Method

Here, we propose an extension of the Partition of Unit Finite Element Method (PUFEM) and a numerical procedure for the solution of J2 plasticity problems. The proposed method is based in the Moving Least Square Approximation (MLSA) and is capable of overcoming singularity problems, in the global shape functions, resulting from the consideration of linear or higher order base functions, in the c...

متن کامل

An Adaptive hp-Version of the Multilevel Particle–Partition of Unity Method

This paper is concerned with the hp-adaptive multilevel solution of second order elliptic partial differential equations using the meshfree particle–partition of unity method. The proposed refinement scheme automatically constructs new discretization points (or particles), the meshfree analogue of an adaptive h-refinement, and local approximation spaces with better local resolution, a p-refinem...

متن کامل

Partition of Unity Finite Element Method Implementation for Poisson Equation

Partition of Unity Finite Element Method (PUFEM) is a very powerful tool to deal overlapping grids. It is flexible and keeps the global continuity. In this paper, we consider PUFEM for Poisson equation for minimal overlapping grids. We present details of the implementation of Poisson equation in 2D for two overlapping domains using triangular meshes. Department of Mathematical Sciences, Univers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2018

ISSN: 1064-8275,1095-7197

DOI: 10.1137/17m112052x